Continuous Random Variables

&

Uniform Probability Distribution

What is a **Random Variable**?

It is a quantity whose values are real numbers and are determined by the number of desired outcomes of an experiment.

Is there any special Random Variable?

We can categorize random variables in two groups:

- **Discrete** random variable
- Continuous random variable

What are **Discrete Random Variables**?

It is a numerical value associated with the desired outcomes and has either a finite number of values or infinitely many values but countable such as whole numbers $0, 1, 2, 3, \cdots$.

What are **Continuous Random Variables**?

It has infinitely many numerical values associated with any interval on the number line system without any gaps or breaks.

What is a **Probability Distribution**?

It is a description and often given in the form of a graph, formula, or table that provides the probability for all possible random variables of the desired outcomes.

Let x be any random variable and P(x) be the probability of the random variable x, then

$$\blacktriangleright \sum P(x) = 1$$

▶
$$0 \le P(x) \le 1$$

What is Continuous Probability Distribution?

It is a probability distribution for a continuous random variable x with probability P(x) such that

•
$$\sum P(x) = 1$$
,
• $0 \le P(x) \le 1$, and
• $P(x = c) = 0$.

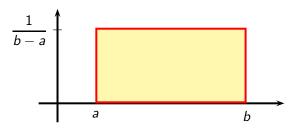
Here are few examples of continuous probability distributions:

- Uniform Probability Distribution
- Standard Normal Probability Distribution
- Normal Probability Distribution

What is a Uniform Probability Distribution?

It is a probability distribution for a continuous random variable x that can assume all values on the interval [a, b] such that

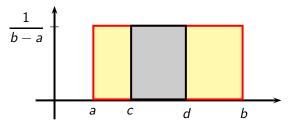
- ▶ All values are evenly spread over the interval [*a*, *b*],
- The graph of the distribution has a rectangular shape,



Elementary Statistics

Uniform Probability Distribution

•
$$P(x = c) = 0$$
, and



can be computed by simply finding the area of the shaded rectangular region.

$$P(c < x < d) = (d-c) \cdot \frac{1}{b-a}$$

Example:

The amount of time, in minutes, that a person must wait for a bus is from 0 and 12 minutes, inclusive, with a uniform probability distribution.

- Draw and label the uniform probability distribution,
- Find the probability that the wait time for a bus for a randomly selected person, is exactly 10 minutes.
- Find the probability that the wait time for a bus for a randomly selected person, is between 7.5 to 10 minutes.

Solution:

We have a uniform probability distribution with a = 0, b = 12, and a rectangular graph with the width of $\frac{1}{b-a} = \frac{1}{12}$.

Uniform Probability Distribution

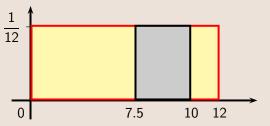
Solution Continued:

Draw and label the uniform probability distribution,

Find the probability that the wait time for a bus for a randomly selected person, is exactly 10 minutes.

$$P(x=10) = 0$$

Find the probability that the wait time for a bus for a randomly selected person, is between 7.5 to 10 minutes.



The gray region here represents the probability for wait time from 7.5 to 10 minutes.

$$P(7.5 < x < 10) = (10 - 7.5) \cdot \frac{1}{12} = 2.5 \cdot \frac{1}{12} = \frac{5}{24}$$

Elementary Statistics

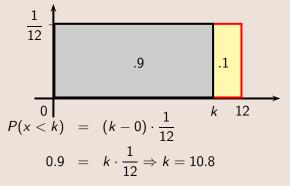
Uniform Probability Distribution

Example:

Using the last example, find the time, rounded to one-decimal place, that separates the bottom 90% wait time from the rest.

Solution:

The gray area below is 0.9 since it represents $k = P_{90}$,



Example:

The amount of coffee dispensed by a certain machine into a cup is a continuous random variable x that assumes all values from x = 11 and x = 25 ounces with uniform probability distribution.

- Draw and label the uniform probability distribution,
- Find the probability that a cup filled by this machine will contain at least 14.5 ounces.
- Find the probability that a cup filled by this machine will contain at most 20 ounces.
- Find the probability that a cup filled by this machine will contain more than 16.5 ounces but less than 18 ounces.
- ▶ Find k such that P(x > k) = 0.3. Explain what this number represents.

Solution:

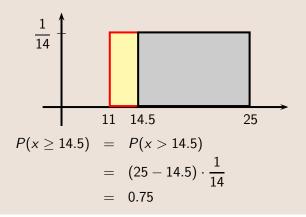
In this example, we have a uniform probability distribution with a = 11, b = 25.

Draw and label the uniform probability distribution The uniform probability distribution has a rectangular graph with its length going from a = 11 to b = 25, and the width of $\overline{b-a} = \overline{14}$ $\frac{1}{14}$ 11 25

Uniform Probability Distribution

Solution Continued:

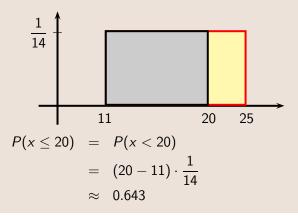
Find the probability that a cup filled by this machine will contain at least 14.5 ounces.



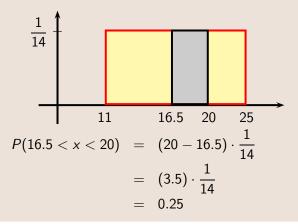
Uniform Probability Distribution

Solution Continued:

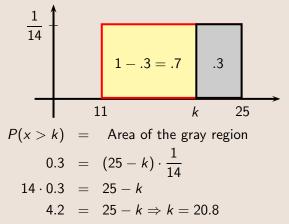
Find the probability that a cup filled by this machine will contain at most 20 ounces.



Find the probability that a cup filled by this machine will contain more than 16.5 ounces but less than 18 ounces.



Find k such that P(x > k) = 0.3. Explain what this number represents.



Finding Mean, Variance, and Standard Deviation of a Uniform Probability Distribution:

Given a continuous random variable x that can assume all values on the interval [a, b] with a uniform probability distribution, then

• Mean
$$\Rightarrow \mu = \frac{b+a}{2}$$
,
• Variance $\Rightarrow \sigma^2 = \frac{(b-a)^2}{12}$, and

• Standard Deviation
$$\Rightarrow \sigma = \sqrt{\sigma^2}$$
.

Example:

A continuous random variable x that assumes all values from

- x = 5 and x = 30 with uniform probability distribution.
 - Draw and label the uniform probability distribution,
 - Find the mean of the distribution.
 - Find the variance of the distribution.
 - Find the standard deviation of the distribution.

Solution:

We have a uniform probability distribution with a = 5, b = 30, and a rectangular graph with the width of $\frac{1}{b-a} = \frac{1}{25}$.

A continuous random variable x that assumes all values from x = 5 and x = 30 has a uniform probability distribution.

Draw and label the uniform probability distribution,

Find the mean of the distribution.

$$\mu = \frac{b+a}{2}$$
$$= \frac{30+5}{2} \Rightarrow \mu = 17.5$$

Find the variance of the distribution.

$$\sigma^{2} = \frac{(b-a)^{2}}{12}$$
$$= \frac{(30-5)^{2}}{12} \Rightarrow \sigma^{2} = \frac{625}{12}$$

Find the standard deviation of the distribution.

$$\sigma = \sqrt{\sigma^2}$$
$$= \sqrt{\frac{625}{12}} \Rightarrow \sigma \approx 7.217$$